11 research outputs found

    Design of robust networks. Application to the design of wind farm cabling networks.

    Get PDF
    RÉSUMÉ: Aujourd’hui, la conception de réseaux est une problématique cruciale qui se pose dans beaucoup de domaines tels que le transport ou l’énergie. En particulier, il est devenu nécessaire d’optimiser la façon dont sont conçus les réseaux permettant de produire de l’énergie. On se concentre ici sur la production électrique produite à travers des parcs éoliens. Cette énergie apparait plus que jamais comme une bonne alternative à la production d’électricité via des centrales thermiques ou nucléaires. Nous nous intéressons dans cette thèse à la conception du câblage collectant l’énergie dans les parcs éoliens. On connaît alors la position de l’ensemble des éoliennes appartenant au parc ainsi que celle du site central collecteur vers laquelle l’énergie doit être acheminée. On connaît également la position des câbles que l’on peut construire, leurs capacités, et la position des noeuds d’interconnexion possibles. Il s’agit de déterminer un câblage de coût minimal permettant de relier l’ensemble des éoliennes à la sous-station, tel que celui-ci soit résistant à un certain nombre de pannes sur le réseau. Mots clés: Recherche opérationnelle, Optimisation combinatoire, Conception de réseaux robustes, Théorie des graphes, Programmation en nombres entiers, Câblage de parcs éoliens.----------ABSTRACT: Nowadays, the design of networks has become a decisive problematic which appears in many fields such as transport or energy. In particular, it has become necessary and important to optimize the way in which networks used to produce, collect or transport energy are designed. We focus in this thesis on electricity produced through wind farms. The production of energy by wind turbines appears more than ever like a good alternative to the electrical production of thermal or nuclear power plants, giving that both of those production can have harmful consequences on the environment. It has then become necessary to optimize the design and construction of such networks. We focus in this thesis on the design of the cabling network which allows to collect and route the energy from the wind turbines to a sub-station, linking the wind farm to the electrical network. In this problem, we know the location of each wind turbine of the farm and the one of the sub-station. We also know the location of possible inter-connection nodes which allow to connect different cables between them. Each wind turbine produces a known quantity of energy and with each cable are associated a cost and a capacity (the maximum amount of energy that can be routed through this cable). The optimization problem that we consider is to select a set of cables of minimum cost such that the energy produced from the wind turbines can be routed to the sub-station in the network induced by this set of cables, without exceeding the capacity of each cable. We focus on cabling networks resilient to breakdowns. Keywords : Operations Research, Combinatorial optimization, Robust networks design, Graph theory, Mixed integer programming, Wind farm cabling networks

    Robust capacitated trees and networks with uniform demands

    Full text link
    We are interested in the design of robust (or resilient) capacitated rooted Steiner networks in case of terminals with uniform demands. Formally, we are given a graph, capacity and cost functions on the edges, a root, a subset of nodes called terminals, and a bound k on the number of edge failures. We first study the problem where k = 1 and the network that we want to design must be a tree covering the root and the terminals: we give complexity results and propose models to optimize both the cost of the tree and the number of terminals disconnected from the root in the worst case of an edge failure, while respecting the capacity constraints on the edges. Second, we consider the problem of computing a minimum-cost survivable network, i.e., a network that covers the root and terminals even after the removal of any k edges, while still respecting the capacity constraints on the edges. We also consider the possibility of protecting a given number of edges. We propose three different formulations: a cut-set based formulation, a flow based one, and a bilevel one (with an attacker and a defender). We propose algorithms to solve each formulation and compare their efficiency

    Conception de réseaux robustes : application à des problèmes de câblage dans les parcs éoliens

    No full text
    Aujourd’hui, la conception de réseaux est une problématique cruciale qui se pose dans beaucoup de domaines tels que le transport ou l’énergie. En particulier, il est devenu nécessaire d’optimiser la façon dont sont conçus les réseaux permettant de produire de l’énergie. On se concentre ici sur la production électrique produite à travers des parcs éoliens. Cette énergie apparait plus que jamais comme une bonne alternative à la production d’électricité via des centrales thermiques ou nucléaires.Nous nous intéressons dans cette thèse à la conception du câblage collectant l’énergie dans les parcs éoliens. On connaît alors la position de l’ensemble des éoliennes appartenant au parc ainsi que celle du site central collecteur vers laquelle l’énergie doit être acheminée. On connaît également la position des câbles que l’on peut construire, leurs capacités, et la position des nœuds d’interconnexion possibles. Il s’agit de déterminer un câblage de coût minimal permettant de relier l’ensemble des éoliennes à la sous-station, tel que celui-ci soit résistant à un certain nombre de pannes sur le réseau.Nowadays, the design of networks has become a decisive problematic which appears in many fields such as transport or energy. In particular, it has become necessary and important to optimize the way in which networks used to produce, collect or transport energy are designed. We focus in this thesis on electricity produced through wind farms. The production of energy by wind turbines appears more than ever like a good alternative to the electrical production of thermal or nuclear power plants.We focus in this thesis on the design of the cabling network which allows to collect and route the energy from the wind turbines to a sub-station, linking the wind farm to the electrical network. In this problem, we know the location of each wind turbine of the farm and the one of the sub-station. We also know the location of possible inter-connection nodes which allow to connect different cables between them. Each wind turbine produces a known quantity of energy and with each cable are associated a cost and a capacity (the maximum amount of energy that can be routed through this cable). The optimizationproblem that we consider is to select a set of cables of minimum cost such that the energy produced from the wind turbines can be routed to the sub-station in the network induced by this set of cables, without exceeding the capacity of each cable. We focus on cabling networks resilient to breakdowns

    Conception de réseaux robustes : application à des problèmes de câblage dans les parcs éoliens

    Get PDF
    Nowadays, the design of networks has become a decisive problematic which appears in many fields such as transport or energy. In particular, it has become necessary and important to optimize the way in which networks used to produce, collect or transport energy are designed. We focus in this thesis on electricity produced through wind farms. The production of energy by wind turbines appears more than ever like a good alternative to the electrical production of thermal or nuclear power plants.We focus in this thesis on the design of the cabling network which allows to collect and route the energy from the wind turbines to a sub-station, linking the wind farm to the electrical network. In this problem, we know the location of each wind turbine of the farm and the one of the sub-station. We also know the location of possible inter-connection nodes which allow to connect different cables between them. Each wind turbine produces a known quantity of energy and with each cable are associated a cost and a capacity (the maximum amount of energy that can be routed through this cable). The optimizationproblem that we consider is to select a set of cables of minimum cost such that the energy produced from the wind turbines can be routed to the sub-station in the network induced by this set of cables, without exceeding the capacity of each cable. We focus on cabling networks resilient to breakdowns.Aujourd’hui, la conception de réseaux est une problématique cruciale qui se pose dans beaucoup de domaines tels que le transport ou l’énergie. En particulier, il est devenu nécessaire d’optimiser la façon dont sont conçus les réseaux permettant de produire de l’énergie. On se concentre ici sur la production électrique produite à travers des parcs éoliens. Cette énergie apparait plus que jamais comme une bonne alternative à la production d’électricité via des centrales thermiques ou nucléaires.Nous nous intéressons dans cette thèse à la conception du câblage collectant l’énergie dans les parcs éoliens. On connaît alors la position de l’ensemble des éoliennes appartenant au parc ainsi que celle du site central collecteur vers laquelle l’énergie doit être acheminée. On connaît également la position des câbles que l’on peut construire, leurs capacités, et la position des nœuds d’interconnexion possibles. Il s’agit de déterminer un câblage de coût minimal permettant de relier l’ensemble des éoliennes à la sous-station, tel que celui-ci soit résistant à un certain nombre de pannes sur le réseau

    Adaptive Network Flow with kk-Arc Destruction

    No full text
    When a flow is not allowed to be reoriented the Maximum Residual Flow Problem with kk-Arc Destruction is known to be NPNP-hard for k=2k=2. We show that when a flow is allowed to be adaptive the problem becomes polynomial for every fixed kk

    Adaptive network flow with kk-Arc Destruction

    No full text
    When a flow is not allowed to be reoriented the Maximum Residual Flow Problem with kk-Arc Destruction is known to be NPNP-hard for k=2k=2. We show that when a flow is allowed to be adaptive the problem becomes polynomial for every fixed kk

    Wind farm cable layout optimization with constraints of load flow and robustness

    No full text
    International audienceWe consider an offshore wind farm defined by the location of the wind turbines and the amount of energy supplied per turbine, as well as the location of the central station responsible for redistributing the collected energy to users on the power grid. Knowing the power injected at each node, the capacities, susceptance and costs of the cables that can be used, the goal is to determine the least expensive cabling to route the energy supplied by the wind turbines to the central station. This cabling must respect the capacity constraints on the cables as well as the electrical constraints of Load Flow defined at each node of the network. In a second step, we look for a cabling that is also robust in case of failure of a cable, the notion of robustness being seen here as the protection again the worst case of failure. This work was carried out in collaboration with EDF Energies renouvelables. We give a mathematical model of the problem taking into account all the constraints of capacity, connectivity, load flow, cable types and incompatibility between edges, in the form of a mixed integer quadratic program that can be linearized and solved using a MIP solver. We then propose two mathematical models for the robust problem, formulation inspired by the previous one and a bi-level program where the second level is a max min program. Finally we present the results of our tests which provide solutions for real data up to about 50 nodes, before concluding
    corecore